首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5463篇
  免费   507篇
  国内免费   1篇
  2023年   24篇
  2022年   22篇
  2021年   132篇
  2020年   83篇
  2019年   113篇
  2018年   119篇
  2017年   104篇
  2016年   172篇
  2015年   315篇
  2014年   325篇
  2013年   405篇
  2012年   489篇
  2011年   478篇
  2010年   280篇
  2009年   248篇
  2008年   354篇
  2007年   325篇
  2006年   297篇
  2005年   327篇
  2004年   300篇
  2003年   253篇
  2002年   216篇
  2001年   46篇
  2000年   32篇
  1999年   43篇
  1998年   48篇
  1997年   29篇
  1996年   28篇
  1995年   21篇
  1994年   37篇
  1993年   21篇
  1992年   26篇
  1991年   24篇
  1990年   14篇
  1989年   14篇
  1988年   8篇
  1987年   12篇
  1986年   18篇
  1985年   10篇
  1984年   21篇
  1983年   7篇
  1982年   10篇
  1980年   11篇
  1979年   10篇
  1978年   9篇
  1977年   25篇
  1976年   12篇
  1974年   6篇
  1972年   8篇
  1971年   7篇
排序方式: 共有5971条查询结果,搜索用时 31 毫秒
91.
Dissecting the genetic basis of intraspecific variations in life history traits is essential to understand their evolution, notably for potential biocontrol agents. Such variations are observed in the endoparasitoid Cotesia typhae (Hymenoptera: Braconidae), specialized on the pest Sesamia nonagrioides (Lepidoptera: Noctuidae). Previously, we identified two strains of C. typhae that differed significantly for life history traits on an allopatric host population. To investigate the genetic basis underlying these phenotypic differences, we used a quantitative trait locus (QTL) approach based on restriction site‐associated DNA markers. The characteristic of C. typhae reproduction allowed us generating sisters sharing almost the same genetic content, named clonal sibship. Crosses between individuals from the two strains were performed to generate F2 and F8 recombinant CSS. The genotypes of 181 clonal sibships were determined as well as the phenotypes of the corresponding 4,000 females. Informative markers were then used to build a high‐quality genetic map. These 465 markers spanned a total length of 1,300 cM and were organized in 10 linkage groups which corresponded to the number of C. typhae chromosomes. Three QTLs were detected for parasitism success and two for offspring number, while none were identified for sex ratio. The QTLs explained, respectively, 27.7% and 24.5% of the phenotypic variation observed. The gene content of the genomic intervals was investigated based on the genome of C. congregata and revealed 67 interesting candidates, as potentially involved in the studied traits, including components of the venom and of the symbiotic virus (bracovirus) shown to be necessary for parasitism success in related wasps.  相似文献   
92.
Gene flow has tremendous importance for local adaptation, by influencing the fate of de novo mutations, maintaining standing genetic variation and driving adaptive introgression. Furthermore, structural variation as chromosomal rearrangements may facilitate adaptation despite high gene flow. However, our understanding of the evolutionary mechanisms impending or favouring local adaptation in the presence of gene flow is still limited to a restricted number of study systems. In this study, we examined how demographic history, shared ancestral polymorphism, and gene flow among glacial lineages contribute to local adaptation to sea conditions in a marine fish, the capelin (Mallotus villosus). We first assembled a 490‐Mbp draft genome of M. villosus to map our RAD sequence reads. Then, we used a large data set of genome‐wide single nucleotide polymorphisms (25,904 filtered SNPs) genotyped in 1,310 individuals collected from 31 spawning sites in the northwest Atlantic. We reconstructed the history of divergence among three glacial lineages and showed that they probably diverged from 3.8 to 1.8 million years ago and experienced secondary contacts. Within each lineage, our analyses provided evidence for large Ne and high gene flow among spawning sites. Within the Northwest Atlantic lineage, we detected a polymorphic chromosomal rearrangement leading to the occurrence of three haplogroups. Genotype–environment associations revealed molecular signatures of local adaptation to environmental conditions prevailing at spawning sites. Our study also suggests that both shared polymorphisms among lineages, resulting from standing genetic variation or introgression, and chromosomal rearrangements may contribute to local adaptation in the presence of high gene flow.  相似文献   
93.
Climate change poses several challenges to biological communities including changes in the frequency of encounters between closely related congeners as a result of range shifts. When climate change leads to increased hybridization, hybrid dysfunction or genetic swamping may increase extinction risk—particularly in range‐restricted species with low vagility. The Peaks of Otter Salamander, Plethodon hubrichti, is a fully terrestrial woodland salamander that is restricted to ~18 km of ridgeline in the mountains of southwestern Virginia, and its range is surrounded by the abundant and widespread Eastern Red‐backed Salamander, Plethodon cinereus. In order to determine whether these two species are hybridizing and how their range limits may be shifting, we assessed variation at eight microsatellite loci and a 1,008 bp region of Cytochrome B in both species at allopatric reference sites and within a contact zone. Our results show that hybridization between P. hubrichti and P. cinereus either does not occur or is very rare. However, we find that diversity and differentiation are substantially higher in the mountaintop endemic P. hubrichti than in the widespread P. cinereus, despite similar movement ability for the two species as assessed by a homing experiment. Furthermore, estimation of divergence times between reference and contact zone populations via approximate Bayesian computation is consistent with the idea that P. cinereus has expanded into the range of P. hubrichti. Given the apparent recent colonization of the contact zone by P. cinereus, future monitoring of P. cinereus range limits should be a priority for the management of P. hubrichti populations.  相似文献   
94.
95.
96.
Structural heterogeneity and the dynamics of the complexes of enzymes with substrates can determine the selectivity of catalysis; however, fully characterizing how remains challenging as heterogeneity and dynamics can vary at the spatial level of an amino acid residue and involve rapid timescales. We demonstrate the nascent approach of site-specific two-dimensional infrared (IR) spectroscopy to investigate the archetypical cytochrome P450, P450cam, to better delineate the mechanism of the lower regioselectivity of hydroxylation of the substrate norcamphor in comparison to the native substrate camphor. Specific locations are targeted throughout the enzyme by selectively introducing cyano groups that have frequencies in a spectrally isolated region of the protein IR spectrum as local vibrational probes. Linear and two-dimensional IR spectroscopy were applied to measure the heterogeneity and dynamics at each probe and investigate how they differentiate camphor and norcamphor recognition. The IR data indicate that the norcamphor complex does not fully induce a large-scale conformational change to a closed state of the enzyme adopted in the camphor complex. Additionally, a probe directed at the bound substrate experiences rapidly interconverting states in the norcamphor complex that explain the hydroxylation product distribution. Altogether, the study reveals large- and small-scale structural heterogeneity and dynamics that could contribute to selectivity of a cytochrome P450 and illustrates the approach of site-selective IR spectroscopy to elucidate protein dynamics.  相似文献   
97.
Because of their role of information transmitter between the spinal cord and the muscle fibers, motor neurons are subject to physical stimulation and mechanical property modifications. We report on motoneuron elasticity investigated by time-resolved pump and probe spectroscopy. A dual picosecond geometry simultaneously probing the acoustic impedance mismatch at the cell-titanium transducer interface and acoustic wave propagation inside the motoneuron is presented. Such noncontact and nondestructive microscopy, correlated to standard atomic force microscopy or a fluorescent labels approach, has been carried out on a single cell to address some physical properties such as bulk modulus of elasticity, dynamical longitudinal viscosity, and adhesion.  相似文献   
98.
Because of their surface localization, G protein-coupled receptors (GPCRs) are often pharmaceutical targets as they respond to a variety of extracellular stimuli (e.g., light, hormones, small molecules) that may activate or inhibit a downstream signaling response. The adenosine A2A receptor (A2AR) is a well-characterized GPCR that is expressed widely throughout the human body, with over 10 crystal structures determined. Truncation of the A2AR C-terminus is necessary for crystallization as this portion of the receptor is long and unstructured; however, previous work suggests shortening of the A2AR C-terminus from 412 to 316 amino acids (A2AΔ316R) ablates downstream signaling, as measured by cAMP production, to below that of constitutive full-length A2AR levels. As cAMP production is downstream of the first activation event—coupling of G protein to its receptor—investigating that first step in activation is important in understanding how the truncation effects native GPCR function. Here, using purified receptor and Gαs proteins, we characterize the association of A2AR and A2AΔ316R to Gαs with and without GDP or GTPγs using surface plasmon resonance (SPR). Gαs affinity for A2AR was greatest for apo-Gαs, moderately affected in the presence of GDP and nearly completely ablated by the addition of GTPγs. Truncation of the A2AR C-terminus (A2AΔ316R) decreased the affinity of the unliganded receptor for Gαs by ~20%, suggesting small changes to binding can greatly impact downstream signaling.  相似文献   
99.
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号